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Additive Genetic Variation in Schizophrenia Risk
Is Shared by Populations of African and European Descent

Teresa R. de Candia,1,2,* S. Hong Lee,3 Jian Yang,3,4 Brian L. Browning,5 Pablo V. Gejman,6

Douglas F. Levinson,7 Bryan J. Mowry,3,8 John K. Hewitt,1,2 Michael E. Goddard,9,10

Michael C. O’Donovan,11 Shaun M. Purcell,12 Danielle Posthuma,13,14,15 the International
Schizophrenia Consortium,16 the Molecular Genetics of Schizophrenia Collaboration,16

Peter M. Visscher,3,4 Naomi R. Wray,3,17 and Matthew C. Keller1,2,17,*

To investigate the extent to which the proportion of schizophrenia’s additive genetic variation tagged by SNPs is shared by populations

of European and African descent, we analyzed the largest combined African descent (AD [n ¼ 2,142]) and European descent (ED

[n ¼ 4,990]) schizophrenia case-control genome-wide association study (GWAS) data set available, the Molecular Genetics of

Schizophrenia (MGS) data set. We show how a method that uses genomic similarities at measured SNPs to estimate the additive genetic

correlation (SNP correlation [SNP-rg]) between traits can be extended to estimate SNP-rg for the same trait between ethnicities. We

estimated SNP-rg for schizophrenia between the MGS ED and MGS AD samples to be 0.66 (SE ¼ 0.23), which is significantly different

from 0 (p(SNP-rg ¼ 0) ¼ 0.0003), but not 1 (p(SNP-rg ¼ 1) ¼ 0.26). We re-estimated SNP-rg between an independent ED data set

(n ¼ 6,665) and the MGS AD sample to be 0.61 (SE ¼ 0.21, p(SNP-rg ¼ 0) ¼ 0.0003, p(SNP-rg ¼ 1) ¼ 0.16). These results suggest that

many schizophrenia risk alleles are shared across ethnic groups and predate African-European divergence.
Introduction

Schizophrenia is a severe mental disorder with a lifetime

prevalence around 1% and a heritability of 0.7–0.8.1,2

Using a linear mixed model, we previously found that

about a third of the genetic variation in liability to schizo-

phrenia is captured by additive effects of common (minor

allele frequency [MAF] > 0.01) SNPs in a large European

case-control data set.3 This approach first derives genetic

similarities at measured SNPs among classically unrelated

individuals and then uses those similarities to estimate

the amount of variability explained by all SNPs together.

Because rare causal variants are not well predicted by com-

mon SNPs, this finding suggests that a substantial portion

of the heritability of schizophrenia is due to additive

effects of common causal variants,3 a conclusion consistent

with extrapolations from results by a different meth-

odology.4 However, it is unclear whether this result also

applies to populations of African descent and, if so,

whether the proportion of schizophrenia’s genetic varia-

tion tagged by SNPs is shared between populations of
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African descent (AD) and European descent (ED). Although

rare variants (MAF< 0.01) are largely population specific,5,6

common variants are typically polymorphic across diver-

gent ethnic groups;7 therefore, it is possible that ameaning-

ful portion of schizophrenia’s genetic variation tagged by

common SNPs could be shared between ED and AD indi-

viduals. However, different causal variants between ethnic-

ities, or different linkage-disequilibrium (LD) patterns

between SNPs and causal variants across ethnicities,

could result in lower overlap in additive genetic variation

tagged by SNPs. To date, ~96% of genome-wide association

study (GWAS) participants have been ED individuals.8,9

Because SNP associations might differ between ethnicities,

genetic studies using European-only samples could yield

results with a strong Eurocentric bias.10

A traditional approach for understanding whether SNP

associations are consistent across ethnicities is to assess

the similarity of GWAS results among different ethnic

groups11–14. However, for most complex traits, only a

small minority of truly associated SNPs reach stringent

genome-wide significance thresholds,15 and so overlap in
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Table 1. Cohort Sizes and Univariate SNP Heritabilities and SEs

Sample Cases Controls h2 (SE)a

MGS AD 1,223 919 0.24 (0.09)

MGS ED 2,571 2,419 0.28 (0.03)

ISC EDb 3,220 3,445 0.27 (0.02)

ah2 represents SNP heritability.
bISC comprises eight imputation cohorts genotyped at separate sites.
significant associations is not necessarily expected, even if

the effects of most SNPs are similar across ethnicities. In an

attempt to gain insight into the overall consistency of

schizophrenia SNP associations between ED and AD popu-

lations, a previous study4 used extremely liberal p value

thresholds to define large sets of risk-score alleles in LD

in an ED ‘‘discovery’’ sample and used these alleles to

generate risk scores in independent ‘‘target’’ samples (the

Molecular Genetics of Schizophrenia [MGS] ED and AD

samples, as well as the smaller ‘‘O’Donovan’’ ED sample).

The most significantly associated set of SNPs in the ED

discovery sample did predict case-control status in the

AD target sample (p ¼ 0.008) but explained substantially

less variance (R2 ¼ 0.4%) than in the ED target samples

(MGS ED: R2 ¼ 3.2%, p ¼ 2 3 10�28; O’Donovan: R2 ¼
2.3%, p ¼ 5 3 10�11), which might appear to suggest

only modest overlap in schizophrenia SNP associations

between EDs and ADs.

A limitation of the genetic-risk-score approach4,16 is that

it requires accurate estimation of effect sizes of individual

SNPs in the discovery sample, and error variance of

GWAS point estimates accumulates in prediction scores

and thus causes estimates of overlap (R2) to be biased

downward as a function of sample size. Furthermore, the

genetic-risk-score approach can underestimate overlap

between ED and AD populations, in particular when dis-

covery SNPs are pruned to be in LD in an ED discovery

sample: because LD tends to be lower in AD popula-

tions,17 more SNPs are required for predicting causal vari-

ants in AD populations than in ED populations.

In the present study, we used a bivariate linear mixed-

effects model implemented in GCTA18 to estimate the

proportion of schizophrenia-risk variation that is tagged

by the additive effects of SNPs (we refer to this estimate

as the SNP heritability) in predominately AD individuals

(African Americans). We also estimated the additive

genetic correlation tagged by SNPs (the SNP correlation)

in schizophrenia between ED and AD individuals. With

this approach, the effects of SNPs are treated as statistically

random and individual SNP effects are not estimated, nor

is there a need to prune SNPs for LD or statistical sig-

nificance. Rather, all SNPs are used simultaneously for

estimating genome-wide similarities between pairs of

individuals; these similarity estimates are in turn used for

estimating variance and covariance parameters in a linear

mixed-effects model. This method does not depend on

reliable estimation of individual SNP effects and so should

provide unbiased estimates of the SNP heritability and SNP

correlation regardless of subject sample size (larger samples

should decrease the SEs of estimates).
Material and Methods

GWAS Samples and Quality Control
The MGS and International Schizophrenia Consortium (ISC) case-

control data sets have previously been described in detail.3,4,19,20
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The study and use of these data sets were approved by institutional

review boards at the University of Colorado. BecauseMGS subjects

and just over half of ISC subjects were genotyped for 909,622

autosomal SNPs (on Affy 6 Platforms), whereas just under half of

ISC subjects were genotyped for ~500K autosomal SNPs on

earlier platforms (Affy 5 and Affy 500K), we used imputed ISC

data to maximize the number of subjects included in the analysis.

Therefore, we conducted the main analysis by using raw MGS and

imputed ISC genotypes. We imputed ISC genotypes with HapMap

3 CEU (Utah residents with ancestry from northern and western

Europe from the CEPH collection) and TSI (Toscani in Italia) pop-

ulations as reference panels.20 We imputed MGS ED genotypes in

the same way to allow a comparison of results from raw and

imputed data. We found no evidence that use of imputed data

affected estimates of SNP heritabilities or SNP correlations;

results were virtually identical across models that used imputed

versus raw MGS ED data (Table S1, available online). We did not

attempt to impute MGS AD genotypes because of the difficulty

of imputing admixed AD samples.21,22 We calculated the MAF

and imputation R2 (ratio of observed to expected variance) for

each SNP for quality-control purposes.

Each data set underwent stringent quality-control procedures

separately. In particular, we dropped (1) individuals with average

missing rates in raw SNP calls > 0.02; (2) individuals who were

more than 5 SDs away from the cohort’s (within data set, within

ethnicity) mean scores on the first two ethnic principal compo-

nents (PCs; see ‘‘PC Analysis’’ below), the first of which differenti-

ated ED and AD individuals; and (3) one individual from each pair

of individuals with genome-wide similarities > 0.05. We dropped

SNPs when (1) MAF < 0.01; (2) missing rates > 0.02 (raw

data only); (3) missing rate differences between cases and

controls > 0.02 (raw data only); (4) SNP frequency differences to

CEU HapMap > 0.15 (because AD individuals tend to be admixed,

the MGS AD data set did not undergo this step); (5) Hardy-

Weinberg equilibrium test (controls only) p < 10�6; and (6) impu-

tation R2 < 0.6 in all cohorts (imputed data only). Only SNPs in

common across cohorts were kept for analysis, resulting in

477,664 SNPs. Final cohort sample sizes are summarized in Table 1.
PC Analysis
PC analysis is used for reducing the dimensionality of data with

correlated variables. When applied to genomic-similarity matrices

computed from SNP data, the first several PCs typically capture

ancestry differences between populations and later PCs can also

capture technical batch effects. We ran PC analysis on subject

pairwise genomic (identity by state [IBS]) similarities across SNPs

from the combined MGS AD, MGS ED, and ISC ED samples, along

with JPT, YRI, and CEU HapMap reference panels, by using a

random subset of 30K SNPs that were pruned to be in linkage

equilibrium and that were shared in common across samples.

The use of HapMap reference panels ‘‘anchored’’ our PC results,
er 5, 2013



such that the first PC (PC1) distinguished African and European

ancestries and the second distinguished Asian ancestry

(Figure S1). We used the PC results to remove ethnic outliers (see

‘‘GWAS Samples and Quality Control’’ above), for inclusion as

covariates to control for population stratification (see ‘‘Linear

Mixed Models for Estimating Case-Control Status’’ below), and

to divide the MGS AD sample into subsamples on the basis of de-

gree of European admixture. After quality control, ADs were

divided into overlapping subsets of decreasing degrees of Euro-

pean admixture, removing individuals > 2, > 1, and > 0.5 SDs

above the mean AD PC1 score (Figure S1).

Linear Mixed Models for Estimating Case-Control

Status
For univariate heritability models, we estimated genomic similar-

ities between pairs of individuals separately in the MGS AD

sample, in the MGS ED sample, and in the ISC ED sample by

using themethod described by Yang et al.23 In particular, we calcu-

lated the genomic similarity for each pair of individuals by

taking the sum of the products of SNP coefficients between

those individuals and then scaling that sum by the expected

SNP heterozygosity,

bAij ¼ 1

L

XL

l¼1

�
xil � 2pl

�
,
�
xjl � 2pl

�
2plql

ðisjÞ

bAii ¼ 1þ 1

L

XL
l¼1

x2il �
�
1þ 2pl

�
xij þ 2p2l

2plql
;

where xil ¼ 0, 1, or 2 according to whether individual i has geno-

type bb, Bb, or BB, respectively, at locus l (alleles are arbitrarily

called b or B), pl and ql are the allele frequencies of B and b, respec-

tively, and 2pl is the mean of xl. These values are scaled to be both

positive and negative; therefore, for clarity we use the term ‘‘simi-

larity’’ rather than ‘‘relationship.’’

For bivariatemodels, we re-estimated the genomic similarities in

the combined MGS AD and MGS ED samples, in the combined

MGS AD and ISC ED samples, and in the combined MGS ED

and ISC ED samples. In the bivariate model, the observed disease

status for traits 1 and 2 can be written as

y1 ¼ X1b1 þ Z1g1 þ e1 for trait 1

y2 ¼ X2b2 þ Z2g2 þ e2 for trait 2;

where y is a vector of observations, b is a vector of fixed covariate

effects, g is a vector of genetic effects tagged by SNPs, and e is a

vector of residuals. X and Z are incidence matrices for b and g,

respectively. The variance covariance matrix (V) is defined as

V ¼
"
Z1AZ

0
1s

2
g1
þ Is2

e1
Z1AZ

0
2s

2
g1g2

Z2AZ
0
1s

2
g1g2

Z2AZ
0
2s

2
g2
þ Is2

e2

#
;

where A is the genomic similarity relationship matrix based on

SNP information across all groups, I is an identity matrix, and

s2
g, s

2
e , and s2

g1g2
are genetic variance tagged by SNPs, residual vari-

ance, and covariance between g1 and g2, respectively.
18 We treated

schizophrenia in each sample as a separate ‘‘trait’’ and estimated

SNP heritabilities (h1
2 and h2

2) and the SNP liability covariance

(cov12) or SNP correlation (SNP-rg ¼ cov12/h1h2) between ethnic-

ities.18,23,24 For all models, we transformed genetic-variance esti-

mates to a liability scale by assuming a disease prevalence of 1%,

as described previously,24 and controlled for gender, 20 PCs, and
The American
site (Table 1) as covariates. Although there were large differences

in average similarities of ED-AD pairs compared to within-

ethnicity pairs, we controlled for these differences by including

ancestry PCs as fixed effects, the first of which captured the

African-European gradient (see Figure S1). We also included

PC12 in bivariate models in order to control for any possible ascer-

tainment or diagnostic differences that might exist between the

most and least admixed individuals. For eachmodel, PCs included

as covariates were from an IBS matrix of subjects included in that

model. Because MAFs can vary by ethnicity, for bivariate models,

elements in the A matrix were standardized with expected allele

frequencies that varied by data set.

In the current context, SNP heritability refers to the proportion

of phenotypic variance in liability to schizophrenia that is ex-

plained by the additive effect of all SNPs together, and SNP corre-

lation refers to the additive genetic correlation (explained by all

SNPs together) between the liability of schizophrenia in ADs and

the liability of schizophrenia EDs. Evidence of a SNP correlation

between ADs and EDs occurs to the degree that AD cases are

more genetically similar to ED cases than to ED controls, and

vice versa, after main effects of ethnicity are controlled for.

Because the two traits (schizophrenia in ADs and schizophrenia

in EDs) are measured on different individuals, the only link

between traits is in the genomic-similarity scores for each pair of

individuals. Therefore, unlike traditional (e.g., twin) models that

decompose phenotypic correlations into additive genetic, non-

additive genetic, and environmental sources that can be mutually

confounded, in the present model there is no such confounding,

and SNP correlations are unlikely to be due to residual (e.g.,

environmental or nonadditive genetic) sources.

We used a permutation approach in which affection status was

permuted within ethnicity in order to exclude the possibility of

upward biases of SNP-heritability and SNP-correlation estimates

(see Figure S2). In addition, because prevalence rates have been

shown to vary across populations,25 we varied this parameter

across populations and found that it did not substantially alter

SNP heritabilities or SNP correlations (see Figure S3). That SNP

correlations are unaffected by prevalence-rate differences is also

evident from the transformation equation in Lee et al.18 Also, to

understand whether some of the genetic overlap in schizophrenia

between ED and AD samples might be due to the relatively high

level of European admixture in ADs, estimated to be an average

of ~15%,26 we ran additional bivariate models, each of which

estimated SNP correlations between EDs and AD subsamples of

higher-proportion African ancestry as judged from the first

ancestry PC (see ‘‘PC Analysis’’ above).

We used the likelihood-ratio test statistic to compare the fit of

full models in which SNP correlations were freely estimated to

the fit of reduced models in which SNP correlations were fixed

to either 0 or 1. The distribution of differences in log likelihoods

between full and reduced models is approximately chi-square

distributed with 1 degree of freedom.

Binning SNPs by Rates of Recombination
We examined whether SNPs in regions of high recombination

showed lower SNP correlations than SNPs in regions of low recom-

bination. To do this, we used recombination rates estimated from

CEU, YRI, and JPTþCHB HapMap populations on 3,303,900

SNPs27 and interpolated recombination rates for 476,704 SNPs

in our data sets. For each SNP, an interpolated recombination

rate was derived from a linear regression of recombination rates

on base pair positions for its two closest HapMap neighbors. A
Journal of Human Genetics 93, 463–470, September 5, 2013 465



Table 2. SNP-Heritability and SNP-Correlation Estimates from Bivariate Models

Sample 1 Sample 2 Sample 1 n Sample 2 n Sample 1 h2 (SE) Sample 2 h2 (SE) cov12
a SNP-rg (SE) p(SNP-rg ¼ 0) p(SNP-rg ¼ 1)

Across Ethnicity

MGS AD MGS ED 2,142 4,990 0.20 (0.09) 0.33 (0.03) 0.17 0.66 (0.23) 0.0003 0.26

MGS AD ISC ED 2,142 6,665 0.22 (0.09) 0.27 (0.02) 0.15 0.61 (0.21) 0.0003 0.16

Within Ethnicity

MGS ED ISC ED 4,990 6,665 0.26 (0.03) 0.27 (0.02) 0.22 0.83 (0.09) <0.0001 0.09

aCalculated by cov12 ¼ SNP-rgh1h2.
SNP-correlation estimate was then derived for a model that only

included SNPs with above-median recombination rates and

separately for a second model that only included SNPs with

below-median recombination rates.
Results

We found that the univariate SNP-heritability estimate for

schizophrenia in ADs (h2 ¼ 0.24, SE ¼ 0.09) was slightly

lower than the SNP-heritability estimates in EDs (h2 ¼
0.28, SE ¼ 0.03 in MGS EDs; h2 ¼ 0.27, SE ¼ 0.02 in

ISCs; Table 1), as might be expected given the lower

average LD between SNPs in African populations.17 The

schizophrenia-liability SNP correlation captured by auto-

somal SNPs between the sexes was high (SNP-rg ¼ 0.70)

among ADs, although a strong conclusion is not possible

given the large SE (0.51) around the SNP-rg estimate.

Nevertheless, this estimate is consistent with the be-

tween-sex genetic correlation we previously reported for

schizophrenia in a much larger sample of EDs (SNP-rg ¼
0.89, SE¼ 0.06). To assess whether SNP heritability differed

by functional annotation of SNPs, we partitioned the vari-

ance explained by SNPs into three components by creating

genomic-similarity matrices of SNPs in genes expressed in

the CNS, those found in other genes, and those not local-

ized to genes. The proportion of SNP heritability estimated

from SNPs in genes expressed in the CNS was 30% for ADs,

and although large SEs do not allow us to distinguish

whether this is significantly greater than the 20% of the

genome these SNPs represent (SE ¼ 0.18, p(30% ¼ 20%) ¼
0.30), these results are also consistent with those we re-

ported previously for EDs (31%, SE ¼ 0.02, p(31% ¼ 20%) ¼
7.6 3 10�8; see Table S2).

The main goal of our analysis was to understand the

degree to which genetic variation tagged by SNPs is shared

between ED and AD populations. To do this, we

estimated the SNP correlation (SNP-rg) for schizophrenia

between ethnicities. SNP correlations were estimated

as SNP-rg ¼ 0.66 (SE ¼ 0.23, p(SNP-rg ¼ 0) ¼ 0.0003,

p(SNP-rg ¼ 1) ¼ 0.26) between MGS ADs and MGS EDs and

similarly as SNP-rg ¼ 0.61 (SE ¼ 0.21, p(SNP-rg ¼ 0) ¼
0.0003, p(SNP-rg ¼ 1) ¼ 0.16) between MGS ADs and ISC

EDs. By way of comparison, the SNP correlation between

MGS EDs and ISC EDs was estimated as SNP-rg ¼ 0.83
466 The American Journal of Human Genetics 93, 463–470, Septemb
(SE ¼ 0.09, p(SNP-rg ¼ 0) < 0.0001, p(SNP-rg ¼ 1) ¼ 0.09)

(Table 2). In follow-up analyses, controlling for 6 rather

than 20 PCs made little difference to SNP-heritability or

SNP-correlation estimates (Table S3). By excluding one

chromosome and rerunning these models 22 times, we

found no evidence that any individual chromosome

disproportionately influenced SNP-heritability or SNP-

correlation estimates (Table S4).

Compared to SNPs with low MAF, SNPs with high MAF

typically better tag high-MAF causal variants, which are

more likely to predate the African-European divergence.

We therefore predicted that the genetic correlation

between EDs and ADs would be higher for high-MAF

SNPs than for low-MAF SNPs. Consistent with this

expectation, SNP-correlation estimates derived from

genomic-relationship matrices restricted to SNPs with

above-median MAFs (MAF > 0.26) were higher (SNP-rg ¼
0.79, SE ¼ 0.28, p(SNP-rg ¼ 0) < 0.0001, p(SNP-rg ¼ 1) ¼ 0.52

between MGS ADs and MGS EDs and SNP-rg ¼ 0.67, SE ¼
0.27, p(SNP-rg ¼ 0) ¼ 0.0004, p(SNP-rg ¼ 1) ¼ 0.37 between

MGS ADs and ISC EDs) than SNP-correlation estimates

derived from genomic-relationship matrices restricted to

SNPs with below-median MAFs (MAF < 0.26, SNP-rg ¼
0.34, SE ¼ 0.20, p(SNP-rg ¼ 0) ¼ 0.0706, p(SNP-rg ¼ 1) ¼
0.0399 between MGS ADs and MGS EDs and

SNP-rg ¼ 0.42, SE ¼ 0.18, p(SNP-rg ¼ 0) ¼ 0.0126,

p(SNP-rg ¼ 1) ¼ 0.0321 between MGS ADs and ISC EDs;

Table 3). We observed that SNP heritabilities were lower

for above-median-MAF (h2 ~ 0.13) than for below-median-

MAF (h2 ~ 0.23) SNPs among MGS ADs, although these

estimates were not significantly different from each other

and are consistent with random fluctuations in estimated

effects across models using different genomic-relationship

matrices.

On the other hand, we found no strong evidence sup-

porting the prediction that SNP-correlation estimates

would be higher in low-recombination regions (SNP-rg ¼
0.60, SE ¼ 0.27, p(SNP-rg ¼ 0) ¼ 0.008, p(SNP-rg ¼ 1) ¼ 0.28

between MGS ADs and MGS EDs and SNP-rg ¼ 0.70, SE ¼
0.25, p(SNP-rg ¼ 0) ¼ 0.0001, p(SNP-rg ¼ 1) ¼ 0.34 between

MGS ADs and ISC EDs) than in high-recombination

regions (SNP-rg ¼ 0.64, SE ¼ 0.23, p(SNP-rg ¼ 0) ¼ 0.0005,

p(SNP-rg ¼ 1) ¼ 0.23 between MGS ADs and MGS EDs and

SNP-rg ¼ 0.41, SE¼ 0.20, p(SNP-rg ¼ 0) ¼ 0.019, p(SNP-rg ¼ 1) ¼
0.054 between MGS ADs and ISC EDs; Table 3).
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Table 3. SNP-Heritability and SNP-Correlation Estimates from Bivariate Models for SNP Bins Based on MAF and Recombination

Sample 1 Sample 2 Sample 1 n Sample 2 n Sample 1 h2 (SE) Sample 2 h2 (SE) cov12
a SNP-rg (SE) p(SNP-rg ¼ 0) p(SNP-rg ¼ 1)

High-MAF SNP Bin

MGS AD MGS ED 2,142 4,990 0.13 (0.07) 0.27 (0.03) 0.15 0.79 (0.28) <0.0001 0.52

MGS AD ISC ED 2,142 6,665 0.12 (0.07) 0.22 (0.02) 0.11 0.67 (0.27) 0.0004 0.37

MGS ED ISC ED 4,990 6,665 0.22 (0.03) 0.21 (0.02) 0.18 0.82 (0.09) <0.0001 0.0717

Low-MAF SNP Bin

MGS AD MGS ED 2,142 4,990 0.21 (0.09) 0.25 (0.02) 0.08 0.34 (0.20) 0.0706 0.0399

MGS AD ISC ED 2,142 6,665 0.24 (0.09) 0.22 (0.02) 0.10 0.42 (0.18) 0.0126 0.0321

MGS ED ISC ED 4,990 6,665 0.19 (0.03) 0.23 (0.02) 0.17 0.83 (0.12) <0.0001 0.19

High-Recombination SNP Bin

MGS AD MGS ED 2,142 4,990 0.20 (0.08) 0.28 (0.03) 0.15 0.64 (0.23) 0.0005 0.23

MGS AD ISC ED 2,142 6,665 0.20 (0.08) 0.22 (0.02) 0.09 0.41 (0.20) 0.0193 0.0541

MGS ED ISC ED 4,990 6,665 0.21 (0.03) 0.22 (0.02) 0.17 0.80 (0.11) <0.0001 0.0836

Low-Recombination SNP Bin

MGS AD MGS ED 2,142 4,990 0.13 (0.07) 0.23 (0.03) 0.10 0.60 (0.27) 0.0076 0.28

MGS AD ISC ED 2,142 6,665 0.15 (0.07) 0.21 (0.02) 0.12 0.70 (0.25) 0.0001 0.34

MGS ED ISC ED 4,990 6,665 0.19 (0.03) 0.20 (0.02) 0.17 0.86 (0.10) <0.0001 0.19

Estimates above are from independent analyses in which the following SNP bins were included separately for each model: 238,810 SNPs with high average MAF
across ADs and EDs, 238,854 SNPs with low average MAF across ADs and EDs, 238,352 SNPs in high-recombination regions, and 238,352 SNPs in low-recom-
bination regions. Recombination rates were estimated from CEU, YRI, and JPTþCHB HapMap populations, and high- and low-MAF and high- and low-recombi-
nation bins were formed with median splits of SNP MAFs and recombination rates, respectively. The Pearson correlation between SNP MAF and recombination
rate was 0.006 (p ¼ 0.0001).
aCalculated by cov12 ¼ SNP-rgh1h2.
To examine whether some of the genetic overlap in

schizophrenia between ED and AD samples might be due

to the relatively high level of European admixture in

ADs, estimated to be an average of ~15%,26 we rederived

SNP-correlation estimates by using subsamples of ADs

with increasingly lower proportions of European ancestry

as judged from the first ancestry PC. We found modest

but nonsignificant decreases in SNP correlation between

ADs and EDs (Table 4). In particular, SNP-rg was estimated

to be 0.46 (se ¼ 0.26, p(SNP-rg ¼ 0) ¼ 0.064, p(SNP-rg ¼ 1) ¼
0.23) between the least admixed MGS ADs and MGS

EDs and to be 0.54 (se ¼ 0.24, p(SNP-rg ¼ 0) ¼ 0.006,

p(SNP-rg ¼ 1) ¼ 0.19) between the least admixed MGS ADs

and ISC EDs.
Discussion

Using the largest combined AD and ED schizophrenia

case-control GWAS available, we have demonstrated an

application that uses direct estimates of SNP correlations

to quantify the amount of shared genetic variance tagged

by SNPs between any two ethnically distinct populations

for any trait. We found that common genetic liability to

schizophrenia is largely shared across ED and primarily

AD populations. Because SNPs included in GWASs are un-

likely to tag the effects of rare causal variants and because
The American
rarer causal variants are increasingly likely to be popula-

tion specific, these estimates of overlap are unlikely to

apply to the portion of schizophrenia heritability caused

by rare causal variants. Although we make no assertion

that all estimated gene effects are exactly additive, these

results are unlikely to be very biased by nonadditive

genetic effects because, if they exist, they contribute very

little to the similarity of distantly related individuals.

Even for comparisons of the same trait within an

ethnicity, SNP correlations between different samples are

typically less than 1 as a result of loss of real signal (e.g.,

greater ethnic, phenotypic, and environmental homoge-

neity within samples) and potential artifacts that can

inflate the unshared portions of heritability (e.g., SNP

calling or plate confounds that differ systematically

between cases and controls). Artifacts are expected to

deflate, not inflate, SNP correlations because random direc-

tional effects of artifacts are not expected to be consistent

across data sets. Because MGS ADs, MGS EDs, and ISC

EDs were all collected in different labs and genotyped on

separate plates, the SNP correlation between MGS EDs

and ISC EDs provides an upper limit on the potential

SNP correlation between MGS ADs and MGS or ISC EDs.

Given that SNP correlations between samples drawn

from the same population are expected to be 1 in the

absence of artifacts, we estimate that the SNP correlation

might be as high as approximately 0.75 (0.61/0.83 or
Journal of Human Genetics 93, 463–470, September 5, 2013 467



Table 4. SNP-Heritability and SNP-Correlation Estimates from Bivariate Models after Exclusion of ADs of Increasing European Admixture

Sample 1 Sample 2 Sample 1 n Sample 2 n Sample 1 h2 (SE) Sample 2 h2 (SE) cov12
a SNP-rg (SE) p(SNP-rg ¼ 0) p(SNP-rg ¼ 1)

Between ADs and MGS EDs

MGS AD (all) MGS ED 2,142 4,990 0.20 (0.09) 0.33 (0.03) 0.17 0.66 (0.23) 0.0003 0.26

MGS AD(z < 2) MGS ED 2,044 4,990 0.18 (0.09) 0.33 (0.03) 0.18 0.73 (0.27) 0.0003 0.41

MGS AD (z < 1) MGS ED 1,792 4,990 0.19 (0.10) 0.31 (0.03) 0.16 0.66 (0.28) 0.0025 0.36

MGS AD (z < 0.5) MGS ED 1,557 4,990 0.22 (0.12) 0.30 (0.03) 0.12 0.46 (0.26) 0.0644 0.23

Between ADs and ISC EDs

MGS AD (all) ISC ED 2,142 6,665 0.22 (0.09) 0.27 (0.02) 0.15 0.61 (0.21) 0.0003 0.16

MGS AD(z < 2) ISC ED 2,044 6,665 0.19 (0.09) 0.28 (0.02) 0.16 0.70 (0.25) 0.0001 0.35

MGS AD (z < 1) ISC ED 1,792 6,665 0.22 (0.10) 0.28 (0.02) 0.16 0.64 (0.24) 0.0006 0.24

MGS AD (z < 0.5) ISC ED 1,557 6,665 0.23 (0.12) 0.28 (0.02) 0.14 0.54 (0.24) 0.0061 0.19

aCalculated by cov12 ¼ SNP-rgh1h2.
0.66/0.83) between EDs and ADs when corrected for

artifacts that lower genetic correlations. This SNP correla-

tion might be closer to 0.5 (0.46/0.83 or 0.54/0.83)

between nonadmixed AD and ED populations.

There are two principal reasons why genetic correlations

across ethnicities are expected to be lower than those

within ethnicities. First, some causal variants might have

different effects across ethnicities (e.g., because of differ-

ences in environmental or genetic backgrounds), and

some might be population specific if they arose or were

lost after the European-African divergence thought to

have occurred 50–100K years ago.28–30 Our finding that

high-MAF SNPs show greater SNP correlations than low-

MAF SNPs lends some support to the hypothesis that

lower-MAF schizophrenia causal variants are increasingly

population specific and/or are differentially tagged by

SNPs across ethnicities. Second, lower SNP correlations

should occur to the degree that LD between causal variants

and the SNPs that predict them differs across ethnicity.

However, we did not find strong evidence that SNP corre-

lations were lower for high-recombination regions than

for low-recombination regions, which might be expected

if differing LD patterns reduce the SNP correlation between

EDs and ADs. Nonetheless, our results do not allow us to

reliably quantify the relative importance of these two

alternatives.

Two limitations to our analysis are worth noting. First,

the AD sample size in particular was small, leading to large

SEs around estimates of both SNP heritabilities and SNP

correlations between ethnicities. This means that we

cannot place great confidence in the specific estimates of

SNP correlation, and we reiterate that these parameters

reflect the allelic spectrum captured by common SNPs

and so might not generalize to the covariance attributable

to variants in low LD with common SNPs. Nevertheless,

our results suggest that there is substantial overlap of vari-

ants tagged by common SNPs between ethnic groups (with

95% confidence that SNP-rg has a lower bound of 0.20) and
468 The American Journal of Human Genetics 93, 463–470, Septemb
allow us to rule out the possibility of no overlap with even

greater confidence. Second, no AD replication GWAS data

set of sufficient size exists for this or any other psychiatric

disorder, highlighting the importance of further large-scale

genome-wide data collection in non-ED samples.

In summary, we have demonstrated how a random-

effects modeling approach fitting all SNPs simultaneously

can elucidate the degree to which additive genetic varia-

tion tagged by SNPs is shared between ethnically divergent

populations. We estimate that about half to three-quarters

of such additive genetic variation underlying the risk of

schizophrenia is shared between AD and ED populations,

suggesting that schizophrenia GWAS discoveries from

European samples are likely to be relevant to AD popula-

tions and thatmeta-analyses of schizophrenia can improve

power by including results across both ED and AD samples.

These conclusions should apply even more strongly to

other ethnic groups given their more recent divergence

times from the European lineage. Because it is vanishingly

unlikely that different causal variants between ethnicities

would systematically be in LD with the same SNPs, these

findings suggest that many schizophrenia causal variants

are ancient and predate European-African divergence.
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